两 步 应 用 题
和尚房子乡第二中心小学论坛 :: 教学交流 :: 三年级区
第1页/共1页
两 步 应 用 题
教学内容:九年义务教育六年制小学数学第五册第 80~81页例1,练习二十一的第1、2题。
教学目的:
1.使学生初步认识含有三个已知条件的两步应用题的结构。
2.使学生初步理解和掌握两步应用题的解题思路,会分步列式解答两步应用题。
3.培养学生分析问题和解决问题的能力,培养学生举一反三,灵活解题的能力。
教学过程:
一、引入新课
(1)师:谁知道10月1日是什么节?今年的10月1日是我们伟大的中华人民共和国50岁的生日,为了庆祝这一盛大的节日,一些同学做了许多美丽的花朵。
板书:同学们做黄花25朵,做紫花18朵。
根据这两个条件,谁能提出一个问题,使它成为一道完整的应用题呢?怎样列式解答呢?(学生口述,电脑出示。)
大家仔细观察,这是一道几步计算的应用题?
(2)师:老师也提一个问题--"做了多少朵红花?(板书)看能不能解答?为什么?"(因为题中没有告诉红花与黄花、紫花的关系,所以不能解答。)
如果老师增加一个条件--"做的红花比黄花和紫花的总数少3朵"(板书)。现在红花与黄花、紫花有关系吗?这道题能不能解答了?
二、进行新课
1.师:这是我们今天要学习的例1,谁来把题读一遍。
2.引导理解题意。
这道题告诉我们的已知条件有哪些?要求什么问题?
红花的朵数跟什么有关系呢?(总数)有什么样的关系呢?谁能用自己的话说说这句话是什么意思?
3.画线段图。
师:我们可以借助线段图来分析它们之间的关系。先画出一条线段表示黄花的朵数,(边说边画)黄花有多少朵?接着画线段表示紫花的朵数,表示紫花的线段应该比表示黄花的线段长呢?还是短呢?为什么短?画完后问:哪一条线段表示的是黄花和紫花的总数呢?(指名上台指出)再画表示红花的线段(师故意把表示红花的线段画得和总数一样长)。提问:是这样吗?为什么不对?应该怎样改?这条线段就表示红花的朵数,也就是这道题要求的问题。
4.分析、解答。
(1)师:请大家想一想,求红花的朵数用一步计算可以吗?为什么不能?要求做了多少朵红花,必须先算什么?
(2)师:每一步怎样算呢?求出黄花和紫花的总数,就可以求出什么了?请你在练习本上试着列式解答,谁最先做完,就上来把答案写在黑板上,其他同学做完后看书自检。
(3)小结:解答例1时,已知红花的朵数比黄花和紫花的总数少3朵,题中没有直接告诉黄花和紫花的总数,所以要先算出黄花和紫花一共多少朵,再算做了多少朵红花,需要几步计算?(两步。)
5.揭示课题:这就是我们今天学习的"两步应用题"(板书课题)。
6.改编例题。
(1)师:下面老师把例1改变一下,把第三个已知条件中的"少"改为"多"。(电脑出示。)
请你默读题目,思考以下问题:
①这道题和例1比,哪些地方发生了变化?
②线段图怎样改?
③解答这道题要先算什么?再算什么?
根据学生讨论情况归纳后,学生独立解答,个别板演。集体订正。问:解答这道题需要几步呀?第一步算什么?第二步算什么?
(2)师:下面老师把例1再改变一下(电脑出示题目。)指名读题后,先提问上述问题,学生再独立解答。
师生集体订正。
7.比较归纳。
(电脑出示)思考:这三道题有什么相同的地方?
有什么不同的地方?解答方法上有什么相同?有什么不同?
学生讨论。
小结:这三道题讲的事情相同,前两个已知条件和问题相同,第三个已知条件不同。从解答方法来看,因为红花的朵数都与黄花和紫花的总数有关系,而"总数"没有直接告诉,所以三道题都需要两步计算,先算出来黄花和紫花一共多少朵,然后再求做了多少朵红花。不同的是求红花的朵数计算方法不同。因为例1告诉我们红花比黄花和紫花的总数少3朵,应该用总数减3;想一想第1题是告诉做的红花比黄花和紫花的总数多3朵,应该用总数加3;想一想的第3题是知道做的红花是黄花和紫花的总数的3倍,也就是3个43,所以用总数乘以3。大家在做应用题时一定要认真分析题意,确定先算什么,再算什么,每一步怎样计算。
三、巩固练习
1.(多媒体出示)填空:
(1)同学们跳绳,小华跳75下,小明跳85下。小青比小华和小明跳的总数少30下。小青跳了多少下?师引导学生分析题意。要求"小青跳了多少下",必须先算( )。算式是:( )。
(2)畜牧场养出羊120只,养奶羊410只。养绵羊的只数是山羊和奶羊总只数的4倍。养绵羊多少只?
师引导学生分析题意。
要求"养绵羊多少只",必须先算( )。
算式是:( )。
2.小游戏--猜一猜:
两名学生报出年龄、身高,师说出教师的年龄、身高与两名学生年龄、身高的关系,让学生猜一猜老师的年龄、身高。
四、课堂总结
今天我们学习了两步应用题,做题时要认真分析题意,确定先算什么,再算什么,每一步该怎样计算。
五、布置作业(略)
教学设想
本节课的教学内容是含有三个已知条件的两步应用题,是在学生熟练掌?quot;求比一个数多(少)几"和"求一个数的几倍是多少"的应用题的基础上进行教学的。教学重点是掌握含有三个已知条件的两步应用题的结构和解答方法.难点是找准题目中的"中间问题"。依照教材的编排意图和学生的认知规律,我对本节课的教学作如下设想:
1.开讲激趣。
上课伊始,由庆祝"国庆节"学生做花的话题引出了复习题,使学生体会到"应用题的基本事实"都来源于生活实际,贴近自己的生活,生活中处处有数学,从而激发了学生的学习兴趣,同时自然渗透爱国主义教育。
2.注意沟通新旧知识之间的联系,重视应用题的结构教学。
数学是一门系统性很强的学科,前后知识联系紧密。我注意运用迁移规律引入新知,使学生主动地获取知识。
在学生根据两个已知条件提出问题并解答完复习题后,我设疑:如果要求"做了多少朵红花?"能不能解答呢?经过讨论,学生明白:题中没有告诉问题与条件之间的关系,所以不能解答。这时,我再增补一个条件引出了例题。这样教学,使学生直观地看到两步应用题是由一步应用题发展而来地,即使学生认清了两步应用题的结构,又渗透了辩证唯物主义观点。
3.突出"中间问题"的教学。
解答两步应用题的关键是正确提出"中间问题",因此,在教学中,我注意突出关键,层层设问:"红花的朵数跟什么有关系?"、"黄花和紫花的总数题中直接告诉了吗?"、"所以要求做了多少朵红花,必须先算什么?"与此同时,注意借助线段图直观地展示分析过程,帮助学生理解数量间的关系。在完成例1及"想一想"的教学后又引导学生比较三道题目的异同,再一次突出本节课的教学重点,强化这个认识。
4."导"、"放"结合,培养学习能力。
教学中我注意留给学生充分思考的空间和时间,努力做到:凡是学生能自己解决的问题,老师决不替代,凡是学生能自己思考的问题,老师决不暗示。"导"就是启发引导,重点是帮助学生正确提出"中间问题",明确解题思路,授人以"渔";"放"就是放手让学生对例1及"想一想"进行试解,这样,不仅使学生享受到尝试解题的成功喜悦、也锻炼了他们学会学习的能力。
5.学以致用,强化新知。
课末,结合本节课的教学重点,设计"猜一猜老师的年龄、身高的小游戏",就把数学与生活实际联系了起来,让学生体会出新知的用途,学起来自然、真实、亲切,不仅达到了学以致用的目的,同时增添了课堂情趣。
总之,本节课的设计努力遵循"教师为主导、学生为主体、训练为主线、思维为核心"的原则,让学生积极主动地参与教学的全过程,在学中练、在练中学,得到充分的表现,真正成为学习的主人。
教学目的:
1.使学生初步认识含有三个已知条件的两步应用题的结构。
2.使学生初步理解和掌握两步应用题的解题思路,会分步列式解答两步应用题。
3.培养学生分析问题和解决问题的能力,培养学生举一反三,灵活解题的能力。
教学过程:
一、引入新课
(1)师:谁知道10月1日是什么节?今年的10月1日是我们伟大的中华人民共和国50岁的生日,为了庆祝这一盛大的节日,一些同学做了许多美丽的花朵。
板书:同学们做黄花25朵,做紫花18朵。
根据这两个条件,谁能提出一个问题,使它成为一道完整的应用题呢?怎样列式解答呢?(学生口述,电脑出示。)
大家仔细观察,这是一道几步计算的应用题?
(2)师:老师也提一个问题--"做了多少朵红花?(板书)看能不能解答?为什么?"(因为题中没有告诉红花与黄花、紫花的关系,所以不能解答。)
如果老师增加一个条件--"做的红花比黄花和紫花的总数少3朵"(板书)。现在红花与黄花、紫花有关系吗?这道题能不能解答了?
二、进行新课
1.师:这是我们今天要学习的例1,谁来把题读一遍。
2.引导理解题意。
这道题告诉我们的已知条件有哪些?要求什么问题?
红花的朵数跟什么有关系呢?(总数)有什么样的关系呢?谁能用自己的话说说这句话是什么意思?
3.画线段图。
师:我们可以借助线段图来分析它们之间的关系。先画出一条线段表示黄花的朵数,(边说边画)黄花有多少朵?接着画线段表示紫花的朵数,表示紫花的线段应该比表示黄花的线段长呢?还是短呢?为什么短?画完后问:哪一条线段表示的是黄花和紫花的总数呢?(指名上台指出)再画表示红花的线段(师故意把表示红花的线段画得和总数一样长)。提问:是这样吗?为什么不对?应该怎样改?这条线段就表示红花的朵数,也就是这道题要求的问题。
4.分析、解答。
(1)师:请大家想一想,求红花的朵数用一步计算可以吗?为什么不能?要求做了多少朵红花,必须先算什么?
(2)师:每一步怎样算呢?求出黄花和紫花的总数,就可以求出什么了?请你在练习本上试着列式解答,谁最先做完,就上来把答案写在黑板上,其他同学做完后看书自检。
(3)小结:解答例1时,已知红花的朵数比黄花和紫花的总数少3朵,题中没有直接告诉黄花和紫花的总数,所以要先算出黄花和紫花一共多少朵,再算做了多少朵红花,需要几步计算?(两步。)
5.揭示课题:这就是我们今天学习的"两步应用题"(板书课题)。
6.改编例题。
(1)师:下面老师把例1改变一下,把第三个已知条件中的"少"改为"多"。(电脑出示。)
请你默读题目,思考以下问题:
①这道题和例1比,哪些地方发生了变化?
②线段图怎样改?
③解答这道题要先算什么?再算什么?
根据学生讨论情况归纳后,学生独立解答,个别板演。集体订正。问:解答这道题需要几步呀?第一步算什么?第二步算什么?
(2)师:下面老师把例1再改变一下(电脑出示题目。)指名读题后,先提问上述问题,学生再独立解答。
师生集体订正。
7.比较归纳。
(电脑出示)思考:这三道题有什么相同的地方?
有什么不同的地方?解答方法上有什么相同?有什么不同?
学生讨论。
小结:这三道题讲的事情相同,前两个已知条件和问题相同,第三个已知条件不同。从解答方法来看,因为红花的朵数都与黄花和紫花的总数有关系,而"总数"没有直接告诉,所以三道题都需要两步计算,先算出来黄花和紫花一共多少朵,然后再求做了多少朵红花。不同的是求红花的朵数计算方法不同。因为例1告诉我们红花比黄花和紫花的总数少3朵,应该用总数减3;想一想第1题是告诉做的红花比黄花和紫花的总数多3朵,应该用总数加3;想一想的第3题是知道做的红花是黄花和紫花的总数的3倍,也就是3个43,所以用总数乘以3。大家在做应用题时一定要认真分析题意,确定先算什么,再算什么,每一步怎样计算。
三、巩固练习
1.(多媒体出示)填空:
(1)同学们跳绳,小华跳75下,小明跳85下。小青比小华和小明跳的总数少30下。小青跳了多少下?师引导学生分析题意。要求"小青跳了多少下",必须先算( )。算式是:( )。
(2)畜牧场养出羊120只,养奶羊410只。养绵羊的只数是山羊和奶羊总只数的4倍。养绵羊多少只?
师引导学生分析题意。
要求"养绵羊多少只",必须先算( )。
算式是:( )。
2.小游戏--猜一猜:
两名学生报出年龄、身高,师说出教师的年龄、身高与两名学生年龄、身高的关系,让学生猜一猜老师的年龄、身高。
四、课堂总结
今天我们学习了两步应用题,做题时要认真分析题意,确定先算什么,再算什么,每一步该怎样计算。
五、布置作业(略)
教学设想
本节课的教学内容是含有三个已知条件的两步应用题,是在学生熟练掌?quot;求比一个数多(少)几"和"求一个数的几倍是多少"的应用题的基础上进行教学的。教学重点是掌握含有三个已知条件的两步应用题的结构和解答方法.难点是找准题目中的"中间问题"。依照教材的编排意图和学生的认知规律,我对本节课的教学作如下设想:
1.开讲激趣。
上课伊始,由庆祝"国庆节"学生做花的话题引出了复习题,使学生体会到"应用题的基本事实"都来源于生活实际,贴近自己的生活,生活中处处有数学,从而激发了学生的学习兴趣,同时自然渗透爱国主义教育。
2.注意沟通新旧知识之间的联系,重视应用题的结构教学。
数学是一门系统性很强的学科,前后知识联系紧密。我注意运用迁移规律引入新知,使学生主动地获取知识。
在学生根据两个已知条件提出问题并解答完复习题后,我设疑:如果要求"做了多少朵红花?"能不能解答呢?经过讨论,学生明白:题中没有告诉问题与条件之间的关系,所以不能解答。这时,我再增补一个条件引出了例题。这样教学,使学生直观地看到两步应用题是由一步应用题发展而来地,即使学生认清了两步应用题的结构,又渗透了辩证唯物主义观点。
3.突出"中间问题"的教学。
解答两步应用题的关键是正确提出"中间问题",因此,在教学中,我注意突出关键,层层设问:"红花的朵数跟什么有关系?"、"黄花和紫花的总数题中直接告诉了吗?"、"所以要求做了多少朵红花,必须先算什么?"与此同时,注意借助线段图直观地展示分析过程,帮助学生理解数量间的关系。在完成例1及"想一想"的教学后又引导学生比较三道题目的异同,再一次突出本节课的教学重点,强化这个认识。
4."导"、"放"结合,培养学习能力。
教学中我注意留给学生充分思考的空间和时间,努力做到:凡是学生能自己解决的问题,老师决不替代,凡是学生能自己思考的问题,老师决不暗示。"导"就是启发引导,重点是帮助学生正确提出"中间问题",明确解题思路,授人以"渔";"放"就是放手让学生对例1及"想一想"进行试解,这样,不仅使学生享受到尝试解题的成功喜悦、也锻炼了他们学会学习的能力。
5.学以致用,强化新知。
课末,结合本节课的教学重点,设计"猜一猜老师的年龄、身高的小游戏",就把数学与生活实际联系了起来,让学生体会出新知的用途,学起来自然、真实、亲切,不仅达到了学以致用的目的,同时增添了课堂情趣。
总之,本节课的设计努力遵循"教师为主导、学生为主体、训练为主线、思维为核心"的原则,让学生积极主动地参与教学的全过程,在学中练、在练中学,得到充分的表现,真正成为学习的主人。
和尚房子乡第二中心小学论坛 :: 教学交流 :: 三年级区
第1页/共1页
您在这个论坛的权限:
您不能在这个论坛回复主题